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A set of improved numerical tables is given for use in calculating the effects of 
nonspherical molecular interactions on the second virial coefficients of simple 
molecular gases. The second virial coefficients are given as a spherical-core con- 
tribution (not discussed in this paper) plus a series of nonspherical perturbation 
terms. The tables give easy-to-interpolate auxiliary functions that occur in the 
perturbation terms. These functions depend on the form assumed for the 
spherical-core part of the interaction potential, but only in a relatively insen- 
sitive way, so that the tables should be adequate for almost all calculations that 
are likely to occur in this connection. The auxiliary functions J,,(T*) are 
tabulated for n from 6 to 30 and T* from 0.5 to 10, where T * =  kT/~o and ~0 is 
the well depth of the spherical-core potential. Explicit formulas are given for the 
simple cases of axially symmetric molecules, but the tabulated functions can also 
be used for more complex cases. 

KEY WORDS: equation of state; molecular gases; nonspherical interactions; 
second virial coefficients. 

1. I N T R O D U C T I O N  

The purpose of this paper is to present improved tables for the calculation 
of the nonspherical contributions to the second virial coefficients of simple 
molecular gases. The calculation method is the perturbation procedure 
developed by Pople [ 1 ] and by Buckingham and Pople [2], who represen- 
ted the intermolecular potential as a spherically symmetric core plus terms 
representing various nonspherical interactions, such as dipole~lipole and 
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quadrupole~quadrupole interactions. There are two reasons why such 
improved tables are needed. The primary reason is that the magnitudes of 
the nonspherical contributions depend on the form assumed for the 
dominant spherical core, and existing tabulations are based on Lennard-  
Jones (12-6) [2]  or (18-6) [3]  models for the core. These models are now 
considered too crude for use in accurate calculations of gas properties. The 
secondary reason is that the existing tabulations are rather scanty and 
involve functions that change rapidly with temperature, making inter- 
polation difficult. 

This paper replaces the (12-6) or (18-6) spherical cores with a more 
realistic (and hence elaborate) potential. The results are presented as tables 
of convenient auxiliary functions from which the desired nonspherical con- 
tributions to second virial coefficients can be easily calculated. It turns out 
that the nonspherical contributions are not overly sensitive to the details of 
the spherical-core potential, so that the present tables are likely to be ade- 
quate for any foreseeable applications. 

Although the present tables are expected to be useful for calculations 
involving most molecular gases, the motivation for preparing them arises 
from a more specialized application. A successful simultaneous correlation 
of the equilibrium and transport properties of the noble gases and their 
mixtures at low densities has recently been achieved [4]  on the basis of a 
combination of a principle of corresponding states and a knowledge of the 
interaction potentials [5, 6]. In its final form, the correlation can be used 
in a predictive mode, because the use of proven theory has ensured com- 
plete internal consistency among the different properties of a particular 
system as well as among the different systems of the set. 

It is natural to attempt to develop a similar synthesis for the more 
complicated case of molecular gases. It is clear, however, that this task is 
more difficult, because the intermolecular potentials cease to be spherically 
symmetric, the theoretical formulas that must be used are more com- 
plicated, and reliable experimentally determined property data become 
scarcer with increasing molecular complexity. Furthermore, no principle of 
corresponding states of comparable accuracy has been discovered even for 
groups of molecular gases. To be successful, such an extension must begin 
by taking into account the lack of spherical symmetry of the intermolecular 
potentials. A common procedure is to picture the potential as a spherically 
symmetrical core plus terms representing various individual nonspherical 
interactions. The effects of such nonspherical terms on second virial coef- 
ficients can then the evaluated by the Pople-Buckingham perturbation 
procedure [1 ,2 ] ,  and the .present tables were prepared with this 
application in mind. The effects of the nonspherical terms on the transport 
properties are believed to be much smaller than on the second virial coef- 
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ficients, largely on the basis of approximate numerical calculations using 
simplified potential models [7].  The hope is then that an extended prin- 
ciple of corresponding states can be developed for the spherical core of the 
potential, at least for some of the simpler molecular gases. It should be 
emphasized, however, that the applicability of the present tables in no way 
hinges on the success or failure of any principle of corresponding states. 
The tables can stand on their own. 

2. P O T E N T I A L  M O D E L  

We write the intermolecular pair potential as the sum of a spherical 
portion V 0 and a nonspherical portion Vns, 

V= Vo(r) + Vns((.Oi) (1) 

in which V 0 depends only on the distance r between the molecular centers 
of mass, and V., depends also on the angles e)i that specify the relative 
orientation of the molecular pair. This means that the molecules are treated 
as rigid rotating bodies and that the effects of the vibrational degrees of 
freedom are left unaccounted for. The effects of vibration on second virial 
coefficients are usually negligible for simple molecular gases except near the 
dissociation limit, which means at very high temperatures [8].  The 
unweighted average of Vns over all relative orientations is forced to be zero 
by assigning any nonvanishing average terms to V 0. The usual 
approximation for Vns, following the pioneering work of Stockmayer [9]  
on dipolar gases, is to represent it as a sum of terms that describe the long- 
range interactions; an additional term to describe the molecular shape, or 
the dependence of the short-range steric repulsions on orientation, was 
suggested by Pople [1]  and Buckingham and Pople [2] ,  so that Vn, is 
represented as 

Vns = Vns(long-range)+ Vns(shape) (2) 

The long-range contributions are customarily taken to be the asymptotic 
forms given by theory as series in r n, and Vns(shape) is often empirically 
represented by the first term in an expansion in spherical harmonics. 

The fact that asymptotic long-range forms are used for Vns suggests 
that the results for the second virial coefficient are valid only at higher tem- 
peratures, where such terms are significant but not dominant. This is con- 
sistent with the use of a perturbation calculation to find the effects of Vns, 
and the results appear as series that converge only for high temperatures. 
Roughly speaking, the results are usually limited to temperatures greater 
than about kT/eo ~-1, where e0 is the well depth of Vo(r), although the 
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details depend on the individual molecular parameters. The criteria for 
convergence are made more precise in the following sections. 

The contributions to V(long-range) can be conveniently divided into 
three parts, 

Vns(long-range) = Vns(electrostatic)+ Vn~(induction) 

+ Vn~(dispersion) (3) 

The electrostatic contributions arise from the interactions between per- 
manent multipole moments of the molecules, which are symbolized by 

#, dipole; 

O, quadrupole; 

g2, octopole; 

qs, hexadecapole; 

etc. 

These interactions are entirely classical and do not involve quantum effects. 
Even quite symmetrical molecules have nonzero multipole moments: 
homonuclear diatomic molecules such as N2 and O2 have quadrupole (and 
higher) moments, tetrahedral molecules such as CH 4 and CFn have 
octopole (and higher) moments, and octahedral molecules such a s  S F  6 

have hexadecapole (and higher) moments. 
The induction contributions are also entirely classical and arise from 

the interactions between the permanent multipole moments of one 
molecule and the moment that they induce in a second molecule. These 
interactions involve the polecular polarizabilities: 

~a, dipole polarizability; 

%, quadrupole polarizability; 

etc. 

The dispersion contributions, first clearly recognized by London 
[10, 11], are fundamentally quantum-mechanical in nature but have a 
simple semiclassical interpretation. The electron distribution of an atom or 
molecule undergoes quantum-mechanical fluctuations that give rise to 
transient multipole moments, which induce corresponding transient 
moments in a second molecule. The electrostatic interactions between these 
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two sets of moments give rise to the attractive dispersion energy. The 
average dispersion energy contributes only to Vo(r), but nonspherical con- 
tributions arise from the anisotropies of the molecular polarizabilities. 
Their angular dependence can be calculated by classical electrostatics, 
although the average coefficients require quantum mechanics for their 
determination. 

In general, the foregoing multipoles and multipole polarizabilities are 
tensors, but in most cases the symmetry of the molecules reduces the com- 
plexity of the interaction expressions considerably. The most important 
asymptotic long-range interactions are collected in Table I and arranged 
according to their dependence on separation distance. The only entries 
whose meanings are not physically obvious are the term (pO, ind/~), which 
varies a s  r - v ,  and the t e r m  (lU2~d2), which varies as r 9. 

The term (#O, ind/~) arises When the molecules have both permanent 
dipole and permanent quadrupole moments. The dipole of molecule 1 
induces a dipole in molecule 2 that interacts back with the quadrupole of 
molecule 1. In addition, the quadrupole of molecule 1 induces a dipole in 
molecule 2 that interacts back with the dipole of molecule 1. Both of these 
interactions fall off as r -7. 

The term (#2C~d2) is really one of higher order in the expansion of 
(/~, ind#); it corresponds physically to the interaction of the induced dipole 
of molecule 2 with the dipole that it in turn induces in molecule 1. There 
are, of course, hosts of such higher-order terms, but (#2c%2) is believed to 
be the most important [2]. 

General formulas for the full tensorial interactions are too complex to 
be presented here; they can be found in the literature [12, 13]. Here we 
give explicit expressions only for what are believed to be the most impor- 
tant terms in the simple case of the interaction of two axially symmetric 

T a b l e  I.  L o n g - R a n g e  N o n s p h e r i c a l  M o l e c u l a r  I n t e r a c t i o n s  A c c o r d i n g  to  T h e i r  A s y m p t o t i c  

D e p e n d e n c e  o n  S e p a r a t i o n  

S e p a r a t i o n  

d e p e n d e n c e  E l e c t r o s t a t i c  I n d u c t i o n  D i s p e r s i o n  

r 3 i1/2 _ _  _ _  

r 4 # 0  - -  - -  

r -5  0 0 ;  #-(2 - -  - -  

r 6 0s  #cb #,  i n d p  C6(~d)  an i s  

r 7 g2f2; 0 4 ;  ... # O ,  i n d p  - -  

r - 8  g2q~; ... O,  i n d # ;  #,  i n d O  C8(c~d, C~q) an i s  
r -9  ~ ;  ... #2c~d2; ... 
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molecules. The coordinate system used is shown in Fig. 1, and the 
following abbreviations are used: 

C I = C O S  01, S 1 = sin 01 

c 2 = c o s  02, S 2 = sin 02 

C = COS(~ 2 - -  ~1) 

(4) 

The dominant electrostatic interactions are 

#2 

Vns(#/g) = - - -~"  (2CLC 2 --S1S2C ) (5)  
F- 

3#0 
Vns(#O) =-~-X-r4 (c2 -- Cl)(3ClC2 -- 2slszc + 1) (6) 

30 2 
Vns(O0)=-~- Z [1 --5c12--5c22- 15c12c22+2(4ClC2--sis2c) 2] (7) 

These interactions vanish when averaged over all angles. 
The dominant nonspherical induction interactions are 

]~2~ d 
V~(#, ind/~) (3c12 + 3c2 2 - 2) - ~ (8Cl c2 - sl s2c) = ---~-r6 r -  

(8) 

which includes the higher-order te rm (/[/20~d2) in Table I, plus 

Vns(pO, ind/~) 12#O~d --  r7 (C13 4- C23) (9) 

and 

Vn~( O, i n d p ) -  9020:d(4c14-t-4Ca4"-I-S14"-I-S24--~)8r 8 (10) 

/ 
01 a 

r 

Fig. 1. Coordinate system for the relative orientation of two axially symmetric 
molecules. 
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There is an analogous term for Vns(#, indO) that varies a s  ~2~q/r8; it is 
customarily neglected, in part because almost no information is available 
on the quadrupole polarizabilities of molecules. The above expressions can 
also contain an additional implicit dependence on orientation due to the 
anisotropy of ed (and %). These interactions all vanish when averaged over 
all angles, because we have assigned any nonzere parts to Vo(r). The non- 
zero parts are 

2#2~a 
Vo(#, ind#) = r 6  (11) 

302c~d 
Vo(O, i nd#)=  r8 (12) 

where ~d is the orientation-averaged polarizability. The term Vo(O, ind#) is 
sometimes included in the nonspherical contribution [7, 12], especially 
when the model adopted for Vo(r) contains no r -8 term, as is the case for 
Lennard-Jones ( n - 6 )  potentials. 

The dominant nonspherical dispersion interaction is 

~r 3 2 3 ] 
Vns(C6anis)=--~-g- 1--~(1--~c)(c12+c2 )--~c(2clc2--sls2c) 2 (13) 

where C6 is the mean dispersion coefficient and ~c is the anisotropy of the 
dipole polarizability, 

tr ----- (~d II- ~d• (14) 

~d N being the polarizability along the molecular axis of symmetry and ~d 5- 
being that perpendicular to it. The corresponding expression for 
Vns(Csanis) is very complicated [14] and is always neglected in 
calculations of virial coefficients. 

The foregoing discussion ignores the so-called eccentricity effects, 
which arise when the geometric center of a molecule does not coincide with 
the center of mass or the center of charge. These give rise to other terms in 
r n and should be included in any treatment of unsymmetrical molecules 
[13, 14]. The calculation of their effects on second virial coefficients 
involves the same auxiliary functions that are tabulated in this paper, and 
we do not bother to write down the detailed expressions here. 

The corresponding expressions for Vns for two unlike axially sym- 
metric molecules are summarized in the monograph of Mason and 
Spurling [ 15 ]. 

Finally, the only calculations for the effect of the short-range 
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V,s(shape) on second virial coefficients have been confined to an empirical 
representation as an inverse power, 

Vns(shape) =--A (3Cl  2 + 3C22 __ 2) 
r n (15) 

where A is a constant and n is an integer (usually 12). The auxiliary 
functions tabulated here are also suitable for this form of V,s(shape). 

3. CALCULATIONS 

The second virial coefficient for nonspherical interactions is 

NA 
B(T) = ~ 111 [ I  - exp( - V/kT)] dr d{l) 1 do,) 2 (16) 

where N A is Avogadro's number, (20 is the normalization factor for the 
angular integration over de), r is the separation between the molecular 
centers of mass, and the integrations extend over all of the relative 
configuration space. For a three-dimensional rigid rotator, for example, 

do  = sin 0 dO &b dO, f2o = 8~c 2 (17a) 

where 0, ~b, and ~, are the usual Eulerian angles, and for an axially sym- 
metric rigid rotator, 

do  = sin 0 dO &b, f2 o = 4re (17b) 

where 0 and ~b are the usual polar and azimuthal angles (see Fig. 1). 
To carry out the integrations, the pair potential is divided into 

spherical and nonspherical parts as in Eq. (1), and the nonspherical part is 
considered as a perturbation; the exponential is then expanded in a series 
as follows: 

exp( - -  V n s / k T  ) = 1 + ~ ( - 1 )J ( Vns/kT)Y 
j =  1 ~ - - - - [  

(18) 

The first term in the expansion gives the spherical contribution to B(T) and 
the summation gives the nonspherical contribution, 

B( T) = Bo( T) + Bns(T ) (19) 
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where 

Bo(T) = 2=NA [ 1 -- e x p ( -  Vo/kT)] r 2 dr 

and 

_ _  ~ , N A  ~ ( - 1 )  j f f l  
Bns(T) = ( V~s/k T) j e x p (  

2 o 2  ~ j, JJJ 0 j = l  " 

1123 

(20) 

-- Vo/k T) dr do ,  dm2 (21) 

It is the appearance of e x p ( - V o / k T  ) in the integrals for Bns that requires 
the new tabulations reported in the present work. 

According to the convention adopted here, integration over angles of 
the first term (j  = l) of the series (21) for Bns yields zero, because any non- 
zero average parts of Vns have been assigned to Vo at the beginning. We 
emphasize that this is only a convention and that the functions we tabulate 
are just as useful if a different convention is adopted. The explicit formulas 
for Bns will, of course, depend on the convention adopted but will 
obviously always be expressible as linear combinations of the following 
integrals that remain after angular integrations have been performed 
[2, 12]: 

( r  " )  - f r -n e x p ( -  Vo/kT) dr = 4~c four n e x p ( -  Vo/kT ) r 2 dr (22) 

In this paper we do not tabulate the ( r  - n )  but, rather, a related set of 
dimensionless integrals, 

where 

;o ~ n - 3  n--3 n--  3 dr* e x p ( - V o * / T * ) = - -  ( r  ~) (23) 
J " ( r * ) - - - 5 -  (r*) " -2  8~ ~o 

T* =- k T/eo (24a) 

Vo* =- Vo/~o (24b) 

r* - r/ao (24c) 

and eo and ao are the energy and distance scaling parameters of Vo. This 
definition of the J~(T*) is chosen so that their dependence on n and T* is 



1124 Boushehri, Mason, and Kestin 

relatively weak; their relation to the functions Hn(y) used by Buckingham 
and Pople [2]  is 

n - 3  
Jn(T*)  = 2 - ~ y  4 On(y  ) (25a) 

T* = 4/y 2 (25b) 

The values of the J , (T*)  are listed in Table AI in the Appendix for T* 
from 0.5 to 10 and n from 6 to 30. Below T * =  0.5 the model for Vns and 
the convergence of the series expansion (21) are suspect, and above 
T * =  10 the nonspherical corrections to B(T) are usually negligible. The 
J , (T*)  were calculated by numerical integration; comparison with the 
H , (y )  of Buckingham and Pople for a Lennard-Jones  (12-6) model, which 
were calculated by an analytical method [2] ,  leads us to believe that the 
accuracy of the entries in Table AI is not worse than about  1 part  in 10 4. 

The form chosen for Vo was 

C C8 _~_ Clo~ 
Vo* = Ax2e-~X _ - Z  +--~ --x--~,} F(x)  (26a) 

where 

and 

X ==- r/r m (26b) 

F(x) = exp - - 1 , x < 1.4 (26c) 

f ( x )  = 1, x >1 1.4 (26d) 

A = 9.502720 • 10 6 

= 16.345655 

C 6 = 1.0914254 

C8 = 0.6002595 

Clo = 0.3700113 

rm/a o = 1.119629 

(26e) 

Here r m is the position of the potential minimum, Oo is the value of r for 
which Vo = 0, and eo is the depth of the potential well. This potential has 
the same shape as the H F D - C  potential of Aziz and Chen 1-16] for Ar-Ar  
interactions but should be regarded here simply as a realistic general model 
for Vo(r). In particular, the C6, Ca, and Clo coefficients in Eq. (26) are not 
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just the dispersion coefficients but contain spherical contributions from 
induced moments as well [such as those given by Eqs. (11) and (12), which 
contribute to C6 and C8, respectively]. 

For concreteness, we give explicit formulas for some of the non- 
spherical contributions to B(T) for axially symmetric molecules. These 
correspond to the formulas for V., given in Eqs. (5)-(13). Other cases 
involving more complicated tensorial interactions can be straightforwardly 
obtained by carrying out the angular integrations in Eq. (21). We use the 
following dimensionless notation: 

B* -- B/(2~zN A ao3/3 ) (27a) 

#* = #/(eO0"03) ~ (27b) 

O* = O/(eoaoS)} (27c) 

O~d* ~ gd/O'03 (27d) 

%* = dq/ao 5 (27e) 

C6" ~ C6/eoO'o 6 (270 

A* ~ A/eoao n (27g) 

The contributions to Bns can be divided into five groups: three groups 
(electrostatic, induction, dispersion) corresponding to the division of 
Vn~(long-range) in Eq. (3), a pure shape contribution from Vn~(shape) of 
Eq. (15), and a large number of cross terms resulting from multiplying out 
the terms (V,  JkT)J  in Eq. (21), 

B~*(T*)  = Bns*(electrostatic ) + Bns*(induction ) 

+ B.~*(dispersion) + B~*(shape) 

+ B~s* (cross terms) (28) 

The individual electrostatic contributions are as follows: 

(#.2"~2 ] B.s*(##) = 3 \ T * J  J12+ " l  (29) 

6(#*0*~2[j8._}_7@~5(#~0*~2 
O n s * ( # O ) ~ - - - - - ' 5 \ 7 J  \ r*  /] J16"~-""] (30) 

6 (O'2~ 2 (O .2" ] . ]  (31) 
The complete series for Bn~*(##) is available [2]. 
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The individual induction contributions are as follows: 

Bns*(#, ind#) = - 2  (~'20~d*)2 (J12 + l l~d*2J18)+  "'" (32) 
\ T* / 

Bns*(#O, ind#) - 864 (#*O*ea*~ 2 77 \ T-g ] J l 4 - t - "  (33) 

B.s.(O, ind#) = 162 (O*2ed*~ 2 
-45--5\ T* / J16+ '"  (34) 

plus an analogous term for B.s*(#, indO) that varies as (#*20~q*/T*)2 J16- 
The dispersion cantribution is 

(tr (1 19 1r + "'" (35) Bns,(C6anis) = 2 \  T* / +i-0 

and the shape contribution is 
8(  3 "~(A*~ 2 

Bns*(shape) = - ~  \-fffL--~ /k~--g / J2n + "'" (36) 

There are, of course, many cross terms, and the hope is that the con- 
vergence of the perturbation expansion is good enough so that not too 
many such terms are needed. The leading cross terms among just the elec- 
trostatic interactions are 

3 {#*O*~2 [ ( _ ~ ,  2 ) 24 (O'2~ ] 
B " s * ( # x O ) = 5 \  T* } J l l + - ~ \ T , / J 1 3 + ' "  (37) 

and the leading cross term among just the induction interactions is 

Bns*(#, ind# x O, ind#) - 144{#*0*c%*'~2j14+... (38) 
385 \ T .2 J 

The leading cross terms between the electrostatic and the induction interac- 
tions are 

Bns*(# # x #, ind#)= 4 (#~2~2 * 3\r*/ cq*J12Ic% +' i -5(-~f)  + ' " ]  (39) 
1 

the first term of which is of the same form as the first term of Bn~*(#, ind#) 
of Eq. (32), and 

Bns*(# # • O, i n d # ) =  48 (#,2)2 (O ,2 )  
- 38----5 \-~-,] \ T* ,1 c%*J14 + "'" . (40) 
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The leading cross terms involving the dispersion interaction are 

B,s*(OOxC6anis)=~-~\ ~C2Jl1+ " -  (41) 

B.s*(#, ind# x C6anis) = - 4  ( /~ '2~(C6"]  c%*tcJ12 + - - -  (42) \T/\--fc-) 

Bn.(O, indl~xO6anis)_ 144(0"2~(C6"~ 
385 \ T* / \  T* ] ~d*Nal4 + "'" (43) 

For simplicity we omit the cross terms involving Vns(shape). 
Except for the cross terms involving Vns(shape), the foregoing for- 

mulas include all terms of order (l /T*) 2 but only those terms of order 
(lIT*) 3 that are generally believed to be the most important. There are 
other terms of order (l /T*) 3. The only terms of order (lIT*) 4 that appear 
are those involving dipole-dipole and dipole-quadrupole electrostatic 
interactions. In any event, the Jn(T*) given in Table AI are adequate for 
the calculation of any higher terms that might be thought significant, as 
well as for the calculation of terms involving octopoles, hexadecapoles, 
induced quadrupoles, eccentricity effects, and so on. 

4. NUMERICAL EXAMPLE 

Before discussing the use of the tables, we wish to illustrate the 
influence of the choice of the spherical-core potential Vo(r) on the 
calculated nonspherical contributions to second virial coefficients. For this 
purpose we choose a hypothetical molecule having properties 
approximately corresponding to CO2, that is, a linear molecule with an 
appreciable quadrupole moment but no dipole moment. Two sets of results 
are shown in Table II, one set with Vo(r) given by the (12-6) potential and 
the other set with V0(r) given by Eqs. (26a-e), each calculated at two 
reduced temperatures, T* = 1 and 5. The major nonspherical contributions 
are Bns*(O0) and Bns*(O0 x C6anis). It is clear that none of the con- 
tributions to Bns* is affected very much by the choice of Vo(r) in this range 
of reduced temperatures. The convergence of the perturbation calculation 
for Bn~* becomes questionable for T* < 1, and the nonspherical corrections 
diminish rapidly in importance for T * >  5. 

The most important conclusion to be drawn from Table II is that the 
effects of changing Vo(r) on Bns* are rather small in the temperature range 
where the perturbation calculation is appropriate. From this it follows that 
further efforts involving more refined forms for Vo(r) would probably be 
pointless. 
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Table II. Numerical Example of the Effect of Different Forms of Vo(r ) on the Calculated 
Nonspherical Contributions to Second Virial Coefficients for COe a 

T* = 1 T* = 5 

Contribution (12,6) Present (12,6) Present 

Bns*(O0 ) -0.6379 -0.6332 - -0 .0233 -0.0243 
Bns*(O , ind#) -0.0006 -0.0006 -0.00003 -0.00003 
Nns*(C6anis) -0.0689 -0.0688 -0.0027 --0.0029 
Bns*(O0 x C6anis) +0.1491 +0.1486 +0.0054 +0.0057 
Bn~*(O, ind/~ x C6anis ) -0.0100 - 0.0100 -0.0005 -0.0005 
Bo* -2.5381 -2.0369 +0.2430 +0.3226 

a O* = 0.8473; x = 0.2664; c%* = 0.0491; C6" = 2.328. 

The most  striking differences in Table II  are the values of the spherical 
contr ibutions Bo* for the two forms of V0. We believe that  these differences 
are largely artifacts resulting from the relative crudeness of the (12-6) 
potential. In particular, if the parameters  eo and % of this potential  are 
correct, then the implied value of C6 = 4eo~r06 is too  large by nearly a factor 
of  two [17] .  In addition, there is no r -8 at t ract ion term in the potential. In 
practice, in fitting data  the values of eo and ao for the (12-6) potential 
would be adjusted to compensate  for such inadequacy,  and a compar i son  
with real da ta  for different forms of Vo would involve different sets of 
parameters.  Such a method  of  compar i son  would, however,  distort the Bns* 
values, and we have therefore avoided it. 

In  short,  the choice of the form of Vo(r) has a marked  effect on  Bo* 
but only a minor  effect on the Bns*. 

5. U S E  O F  T A B L E S  

Table AI lists values of  the function Jn(T*),  defined by Eq. (23), for 
T* and n in the ranges 

0.5 ~< T* ~< 10 (44) 

6 ~< n ~< 30 (45) 

The convergence of the per turbat ion  calculation of Bns becomes 
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questionable for most systems when T* <0.5, and the spherical con- 
tribution Bo usually dominates for T* > 10. The numerical values of Jn(T*) 
were obtained with the form of the spherical-core potential Vo(r) as given 
by Eqs. (26a-e). The example in the preceding section illustrates that the 
results, somewhat surprisingly, are not sensitive to the form chosen for 
Vo(r). The tables allow the effects of the molecular rotational degrees of 
freedom on second virial coefficients to be calculated. They take no account 
of the vibrational degrees of freedom, whose effects are usually negligible, 
as already stated earlier. 

To use the tables, the intermolecular potential must first be written as 
the sum of a spherical part Vo and a nonspherical part Vns, as in Eq. (1), 
and then Vn~ must be expressed as a sum of terms, each of the form of r-'~ 
multiplied by a function of the relative orientations of the two molecules. 
Any terms from Vns that do not vanish on averaging over all orientations 
must be put into Vo. Substitution of Vn~ into Eq. (21) and evaluation of 
the angular integrations then lead to an expression for Bns as a series in the 
functions J,, each multiplied by an inverse power of T. We have given 
detailed formulas only for the case of two identical axially symmetric 
molecules, but the tables can be used with more complicated cases as well 
because the same functions J, will appear. 

For  illustration let us consider the case of a polarizable molecule with 
a permanent quadrupole moment and include the nonspherical dispersion 
interaction but neglect the nonspherical steric repulsion (shape) interaction. 
The molecular parameters needed are then O, ~d, ~c, and C6, which must 
be obtained from independent sources (usually dielectric and optical data). 
In addition, the spherical parameters e0 and ao must be known. These 
might be obtained independently from analysis of viscosity data or possibly 
even from the second virial coefficients themselves (in which case an 
iteration procedure would be necessary). Then the explicit formula for 
calculating the second virial coefficient as a function of temperature is 

B(T) 
(2n/3) NAao 3 -- B*(T*) = Bo*(T* ) + Bn~*(O0) + B,~*(O, ind#) 

+ Bn~*(C6anis ) + Bns*(O0 x C6 anis ) 

+ Bn~*(O, ind# x C6anis) + ""  (46) 

The determination of the spherical contribution Bo* is entirely outside 
the scope of this paper. It can be obtained from some assumed from for 
Vo(r ), from a corresponding-states correlation, or from any other source. It 
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is to be emphasized that it does not have to be obtained from the same 
form of Vo that we have used to evaluate the Jn functions in Table AI. 
Although this might seem desirable form the standpoint of consistency, it is 
unnecessary because of the relative insensitivity of the Jn to Vo, as 
illustrated in the preceding section. 

The calculation of B(T) is completed by evaluation of the individual 
terms in Eq. (46) as follows: Bns*(O0) from Eq. (31), Bns*(O, ind/~) from 
Eq. (34), B,~*(C6anis) from Eq. (35), B,~*(OO • C6anis) from Eq. (41), 
and Bns*(O, ind# x C6anis) from Eq. (43). If slow convergence is suspected, 
say because O* happens to be unusually large, then additional terms aris- 
ing from the expansion of Eq. (21) can be calculated straightforwardly. 

APPENDIX 

Table AI. The Functions Jn(T*) for the Calculation of Nonspherical Contributions to Second 
Virial Coefficients 

T* J6 J7 J8 J9 Jlo 

0,5 1.7818 1.9819 2.1198 2.2123 2.2715 
0.6 1.4128 1.5553 1.6545 1.7225 1.7679 
0.7 1.2075 1.3189 1.3977 1.4532 1.4919 
0.8 1.0795 1.1721 1.2388 1.2872 1.3225 
0.9 0.9932 1.0737 1.1328 1.1770 1.2107 
1.0 0.9319 1.0040 1.0581 1.0998 1.1328 

1.2 0.8517 0.9137 0.9622 1.0017 1.0351 
1.4 0.8028 0.8593 0.9054 0.9447 0.9797 
1.6 0.7708 0.8243 0.8697 0.9098 0.9470 
1.8 0.7488 0.8009 0.8463 0.8880 0.9277 
2.0 0.7333 0.7847 0.8309 0.8744 0.9168 

2.5 0.7106 0.7627 0.8122 0.8611 0.9110 
3.0 0.7004 0.7548 0.8086 0.8635 0.9211 
3.5 0.6964 0.7540 0.8124 0.8736 0.9391 
4.0 0.6960 0.7569 0.8203 0.8879 0.9612 
4.5 0.6976 0.7622 0.8305 0.9045 0.9858 
5.0 0.7005 0.7689 0.8422 0.9226 1.0118 

6.0 0.7087 0.7845 0.8678 0.9608 1.0659 
7.0 0.7183 0.8016 0.8947 1.0002 1.1210 
8.6 0.7286 0.8192 0.9219 1.0398 1.1763 
9.0 0.7391 0.8369 0.9491 1.0792 1.2312 

10.0 0.7496 0.8544 0.9758 1.1180 1.2856 



T* J u  J12 J13 J14 J15 

0.5 2.3061 2.3227 2.3258 2.3193 2.3058 
0.6 1.7967 1.8135 1.8215 1.8233 1.8206 
0.7 1.5185 1.5364 1.5481 1.5554 1.5598 
0.8 1.3485 1.3680 1.3828 1.3946 1.4044 
0.9 1.2370 1.2581 1.2759 1.2915 1.3058 
1.0 1.1599 1.1830 1.2035 1.2225 1.2409 

1.2 1.0646 1.0916 1.1174 1.1428 1.1685 
1.4 1.0122 1.0434 1.0743 1.1058 1.1384 
1.6 0.9827 1.0182 1.0542 1.0916 1.1310 
1.8 0.9669 1.0066 1.0478 1.0911 1.1372 
2.0 0.9596 1.0037 1.0500 1.0992 1.1521 

2.5 0.9630 1.0182 1.0774 1.1417 1.2117 
3.0 0.9826 1.0490 1.1215 1.2012 1.2891 
3.5 1.0101 1.0879 1.1739 1.2694 1.3760 
4.0 1.0419 1.1313 1.2310 1.3428 1.4687 
4.5 1.0761 1.1772 1.2909 1.4195 1.5653 
5.0 1.1118 1.2246 1.3526 1.4984 1.6649 

6.0 1.1854 1.3221 1.4793 1.6607 1.8706 
7.0 1.2601 1.4212 1.6086 1.8272 2.0831 
8.0 1.3351 1.5210 1.7393 1.9966 2.3010 
9.0 1.4099 1.6209 1.8710 2.1685 2.5237 

10.0 1.4842 1.7207 2.0034 2.3426 2.7509 

T* J16 J17 J18 J19 "/20 

0.5 2.2873 2.2655 2.2417 2.2166 2.1912 
0.6 1.8149 1.8074 1.7987 1.7896 1.7806 
0.7 1.5624 1.5638 1.5649 1.5660 1.5675 
0.8 1.4131 1.4213 1.4296 1.4384 1.4479 
0.9 1.3196 1.3334 1.3478 1.3629 1.3793 
1.0 1.2592 1.2780 1.2978 1.3187 1.3412 

1.2 1.1951 1.2229 1.2525 1.2841 1.3181 
1.4 1.1726 1.2090 1.2480 1.2898 1.3350 
1.6 1.1728 1.2176 1.2659 1.3181 1.3746 
1.8 1.1866 1.2399 1.2976 1.3604 1.4287 
2.0 1.2091 1.2710 1.3385 1.4122 1.4928 

2.5 1.2885 1.3729 1.4659 1.5686 1.6824 
3.0 1.3866 1.4948 1.6155 1.7501 1.9007 
3.5 1.4952 1.6289 1.7793 1.9487 2.1400 
4.0 1.6107 1.7714 1.9537 2.1608 2.3967 
4.5 1.7312 1.9204 2.1367 2.3845 2.6689 
5.0 1.8557 2.0749 2.3273 2.6186 2.9555 

6.0 2.1143 2.3979 2.7288 3.1158 3.5695 
7.0 2.3835 2.7372 3.1548 3.6490 4.2354 
8.0 2.6620 3.0914 3.6038 4.2167 4.9518 
9.0 2.9489 3.4596 4.0748 4.8179 5.7181 

10.0 3.2439 3.8413 4.5672 5.4521 6.5338 

840/7/6-2 



T* Jzl J22 J23 Jz4 J25 

T'* J26 J27 J28 J29 J30 

0.5 2.0532 2.0349 2.0183 2.0034 1.9903 
0.6 1.7444 1.7430 1.7433 1.7453 1.7490 
0.7 1.5997 1.6104 1.6229 1.6373 1.6538 
0.8 1.5345 1.5554 1.5784 1.6038 1.6316 
0.9 1.5141 1.5444 1.5773 1.6132 1.6521 
1.0 1.5215 1.5611 1.6040 1.6504 1.7006 

1.2 1.5878 1.6467 1.7104 1.7794 1,8541 
1.4 1.6973 1.7771 1.8638 1.9581 2.0606 
1.6 1.8354 1.9383 2.0507 2.1736 2.3081 
1.8 1.9952 2.1237 2.2649 2.4202 2.5909 
2.0 2.1731 2.3300 2.5032 2.6948 2.9067 

2.5 2.6854 2.9260 3.1951 3.4965 3.8346 
3.0 3.2846 3.6287 4.0181 4.4596 4.9609 
3.5 3.9663 4.4353 4.9720 5.5870 6.2931 
4.0 4.7298 5.3469 6.0599 6.8854 7.8426 
4.5 5.5757 6.3656 7.2866 8.3626 9.6220 
5.0 6.5056 7.4946 8.6575 10.0276 11.6451 

6.0 8.6252 10.0977 11.8555 13.9584 16.4798 
7.0 11.1060 13.1865 15.7035 18.7558 22.4657 
8.0 13.9672 16.7934 20.2539 24.5016 29.7281 
9.0 17.2291 20.9521 25.5608 31.2806 38.3973 

10.0 20.9125 25.6972 31.6800 39.1807 48.6092 

0.5 2.1659 2.1411 2.1172 2.0945 2.0731 
0.6 1.7720 1.7642 1.7573 1.7516 1.7473 
0.7 1.5698 1.5731 1.5775 1.5834 1.5907 
0.8 1.4586 1.4705 1.4839 1.4989 1.5158 
0.9 1.3971 1.4164 1.4377 1.4609 1.4863 
1.0 1.3655 1.3918 1.4203 1.4513 1.4850 

1.2 1.3547 1.3942 1.4370 1.4833 1.5335 
1.4 1.3838 1.4367 1.4941 1.5563 1,6239 
1.6 1.4361 1.5028 1.5755 1.6548 1.7411 
1.8 1.5032 1.5847 1.6737 1.7712 1.8781 
2.0 1.5811 1.6781 1.7846 1.9018 2.0309 

2.5 1.8084 1.9484 2.1039 2.2771 2.4701 
3.0 2.0694 2.2586 2.4713 2.7106 2.9803 
3.5 2.3564 2.6015 2.8796 3.1958 3.5558 
4.0 2.6659 2.9736 3.3259 3.7302 4.1948 
4.5 2.9961 3.3733 3.8088 4.3128 4.8970 
5.0 3.3460 3.7996 4.3275 4.9433 5.6629 

6.0 4.1026 4.7306 5.4718 6.3489 7.3891 
7.0 4.9329 5.7648 6.7592 7.9508 9.3823 
8.0 5.8360 6.9023 8.1915 9.7542 11.6533 
9.0 6.8117 8.1441 9.7716 11.7652 14.2138 

10.0 7.8602 9.4913 11.5028 13.9905 17.0757 
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